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Summary 
Designing a large-scale, high-performance data storage 

system presents significant challenges. This paper 

describes a step-by-step approach to designing such a 

system and presents an iterative methodology that 

applies at both the component level and the system 

level. A detailed case study using the methodology 

described to design a Lustre storage system is 

presented. 

Introduction  
A good data storage system is a well-balanced:  each 

individual component is suited for its purpose and all 

the components fit together to achieve optimal 

performance. Designing such a system is not 

straightforward. A typical storage system consists of a 

variety of components, including disks, storage 

controllers, IO cards, storage servers, storage area 

network switches, and related management software. 

Fitting all these components together and tuning them 

to achieve optimal performance presents significant 

challenges.  

Experienced storage designers may employ a collection 

of practical rules and guidelines to design a storage 

system. Such rules are usually based on individual 

experience; however they may not be generally 
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applicable, and may even be outdated due to recent 

advances in storage technology.  For example, some 

designers consider it a poor practice to mix different 

manufacturer’s hard disks in one RAID group, and that 

continues to be true. Another common rule says to fill 

only 80 percent of the available space in a disk 

enclosure, since the extra space may not be needed 

and the controller may not have the bandwidth to 

support the added capability. This latter rule may only 

apply in specific circumstances.  

It is not always possible to design one system to 

perfectly meet all requirements. However, if we 

choose to start with one aspect of the design and 

gradually incorporate more aspects, it is possible to 

find the best balance between performance, 

availability, and cost for a particular installation. 

A typical design process starts with a requirements 

analysis. The designer determines requirements in a 

top-down process that creates a complete view of the 

system. Once the design constraints are understood, 

the performance requirements can be determined at 

the component level. The design can then be built, one 

component at a time.  

A Systematic Approach to Storage 
System Design 
A high-performance storage system is part of a larger 

compute resource. Such a compute resource is 

generally a cluster of computers (compute nodes - CNs) 

connected by a high-speed network (HSN) to a group 

of disks that provide long-term storage for data. 

Applications running on the CNs either consume data 

(input) or produce data (output).  The disks storing this 

data are generally organized in groups and served by 

one or more servers. Various architectures connect the 

hardware components in different ways and provide 

different software mechanisms for managing the data 

and access to it. 

The designer planning the storage system for such a 

compute resource has the task of identifying the 

general structure of the storage system, specifying 

the components that will go into that general 

structure, and determining how those components will 

interact with the compute and network components. 

Storage system design begins with creating a list of 

requirements that the system is to fulfill. This list may 

have several diverse requirements, such as: 

• a fixed budget, with prioritizations on 
requirements, such as performance or capacity 

• limits on power or space 

• minimum acceptable performance (aggregate 
data rate) 

• minimum aggregate storage space 

• fault tolerance 

• The ability to support a  specific application 
workload 

This will be a list of fixed and more flexible 

requirements, and many others are possible.  One fixed 

requirement might set the specific minimum bandwidth 

that the design must meet.  Then other, more flexible 

requirements may be adjusted in order to meet fixed 

requirements and meet the overall performance and 

cost goals. 

The overall storage system design will specify the 

kinds of components to be employed and how they will 

be connected. Creating this design can be a challenging 

task. Design choices may be constrained by practical 

considerations respecting the needs of the customer 

or vendor partner.    

This paper begins by selecting an overall design 

structure, although other structures are possible. How 

one chooses among these basic design structures is 

beyond the scope of this paper, but here are a few 

ways one might do so: 
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• An experienced designer may have guidance 
about the best structure to meet the primary 
requirements.  

• A reference system may have already been 
deployed and found to meet a set of similar 
requirements.   

• A review of case studies such as the study in the 
second half of this paper may provide guidance to 
the novice designer.  

For this paper, we’ve selected a relatively common 

reference design structure for our storage system. Our 

task is to create from that reference design, a 

complete design for our target storage system. Figure 

1 depicts our selected reference design structure. 

Other structures are possible. 

 

 
Figure 1. A General Storage Architecture.  

Before the design is complete, it needs to specify the 

number and type of every component, and identify to 

what extent the design meets the requirements. As 

design choices are made, a choice may lead to a design 

that does not meet the requirements and/or impacts 

other choices. In such a case, one will need to iterate 

over the choices to improve the design. The following 

design methodology uses a step-by-step "pipeline" 

approach for examining and selecting each component.  

Evaluating Components - the Pipeline 
Approach 
Our design methodology uses a "pipeline" approach for 

examining each component.  This approach evaluates 

components in order, by following the path of a byte of 

data as it flows from a disk, through the intervening 

components, to the application. Other orderings are 

possible, but this paper confines itself to this read 

pipeline.  

The entire pipeline’s performance is governed by the 

performance of its individual components, and system 

performance is limited by the slowest component. 

Exceptions will only be brief, transient departures from 

what is otherwise a steady flow of data, limited by the 

slowest component. Thus, we need to consider each 

component individually.  

First, we examine the storage media. Next, the storage 

controller is examined together with the disks as a 

composite. The performance of these two components 

taken together will not be better than the 

performance of the individual components, and 

generally will be worse due to inevitable inefficiencies 

in their operation.  

We continue this process, adding one component at a 

time to the composite, until the pipeline is complete. 
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Figure 2. A storage pipeline 

Figure 2 arranges the components from Figure 1 in 

order, from left to right, following the read pipeline. 

The performance line, beginning on the left, represents 

the performance as each successive component is 

added to the pipeline. For example, when the storage 

controller is added, some small inefficiency may cause 

the two components (disks and controller) to perform a 

little below the value for the disks alone. This is 

represented by the small step down for the line below 

the controller. The line shows a decrease in 

performance (or ideally, stays about the same) with 

the addition of each new component to the design.  

One caveat to this approach is that the introduction of 

a new component may cause us to rethink the design 

of a previous component. For example, if the number 

of disks just satisfies the performance and capacity 

requirements, but together with the controller the 

performance drops below the requirement, we may 

need to backtrack and redesign the disk portion.  

Further if, we know that the controller can easily 

handle more disks, this may motivate us to consider 

provisioning more disks, in anticipation of performance 

bottlenecks that may occur later in the design. For the 

designer new to this activity, this may lead to 

significant backtracking to get the end-to-end design 

just right. An experienced designer may modify the 

design in anticipation of such backtracking, and the 

case study in the second half of this paper shows an 

example of that. 

This paper does not address performance 

benchmarking. Possible targets for benchmarking and 

relevant applications are mentioned in passing. Some 

individual components cannot be tested in isolation, 

but a systematic approach to benchmarking 

methodology can allow the designer to infer the 

capability of an individual component. A component’s 

performance can be acquired by testing, or by finding 

such results documented by others.  

Using an Iterative Design Process 
There are many components that go into a storage 

system. Accordingly, the design process needs to be 

methodical. Breaking the process into discreet steps 

makes it a straightforward activity of iterating a simple 

procedure that incorporates successively more 

components to best meet requirements.  

This design process introduces a component, selects 
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its properties, combines it with the previously designed 

pipeline of components, and evaluates to what extent, 

the new pipeline meets the system requirements. 

Several cycles of selection, combination, and 

evaluation (S-C-E) will be needed before the design is 

complete.  

 

 
Figure 3. The iterative design approach 
 

Figure 3 depicts the S-C-E cycle. At the Add next 

component step, we introduce the next component in 

the pipeline. Next, we select properties of the 

component that may satisfy the requirements. The 

third step for the component is to add it to the pipeline 

(Combine with pipeline design).  Finally, we evaluate 

the requirement to see if the design thus far meets 

that requirement.  

It may be that choices in previous iterations locked the 

pipeline into a design that cannot meet the 

requirements. At such a point it is usually apparent 

where the faulty choice was, so the process can 

backtrack to select a better component that will meet 

system requirements. This will come up in the case 

study presented next. 

A Case Study Using the Lustre File 
System 
In the following case study, we’ll design a storage 

system for a high performance compute cluster.   

Analyzing the Requirements 
Analysis of this hypothetical storage system identified 

the following requirements:  

• A single namespace 

• 10 PB (10 X 10245 bytes) of usable space 

• 100 GB/s (100 X 10243 bytes per second) 
aggregate bandwidth 

• Ability to support access by 2000 clients in 
parallel 

• No single point of failure 

 

Table 1 summarizes the capabilities offered by Lustre.  
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The requirements fall well within the capabilities of 

Lustre, so Lustre is a good choice for this system. 

 

 

Table 1. Suitable Use Cases for Lustre* 

Storage System Requirements  Lustre File System Capabilities 

Large file system Up to 512 PB for one file system. 

Large files Up to 32 PB for one file. 

Global name space A consistent abstraction of all files allows users to access 
file system information heterogeneously. 

High throughput 2 TB/s in a production system. Higher throughput being 
tested. 

Many files Up to 10 million files in one directory and 2 billion files in 
the file system. Virtually unlimited with Distributed Name 
Space. 

Large number of clients accessing 
the file system in parallel 

Up to 25,000+ clients in a production system.  

High metadata operation rate Support for 80,000/s create operations and 200,000/s 
metadata stat operations. 

High Availability Works with a variety of high availability (HA) managers to 
support automated failover to meet no-single-point-of-
failure (NSPF) requirements.  

 

Designing and Building the Pipeline 
Starting at the storage end of the pipeline shown in 

Figure 2, the disks and disk enclosures are designed to 

meet system requirements. Then the next component, 

the storage controller, is added to the design and 

adjustments made to ensure the two components 

together meet requirements. Then the next 

component is added, adjustments are made again, and 

so on, until the pipeline is complete.  

Disks and Disk Enclosures 
Our example storage system requires a disk 

configuration that delivers 10 PB of usable storage 

and 100 GB/s of aggregate bandwidth. Usable storage 

means the storage that the client sees when the file 

system is mounted. The usable storage capacity of a 

disk is less than its physical capacity, which is reduced 

by such factors such as RAID, hot spares, etc. In a 

Lustre file system, an IO operation may access 

metadata storage or object storage. Each storage type 

has its own characteristic workload, which must be 

taken into account in the design for that storage.  

Metadata storage stores information about data files 

such as filenames, directories, permissions, and file 

layouts. Metadata operations are generally small IOs 

that occur randomly. Metadata requires a relatively 

small proportion, typically only 1-2 percent, of file 

system capacity.  
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Object storage stores the actual data. Object storage 

operations can be large IOs that are often sequential. 

A reasonable starting point for designing metadata 

storage or object storage is to consider the capacity 

and performance characteristics of the available 

storage devices. For this example, we consider the 

Seagate* hard disk drives shown in Table 2. 

 

Table 2. Comparing Hard Disks 

Specifications Seagate 15K.7 HDD 
(600 GB, 15,000 RPM)  

Seagate ES.2 HDD 
(3 TB, 7200 RPM)  

Seagate ES HDD 
(1 TB, 7200 RPM )  

Average IO/s 178 76 76 

Sustained data 
transfer rate (MB/s) 

208 155 147 
 

 

As shown, the rotational speed makes a significant 

difference in disk performance. The 15,000-RPM hard 

disk offers twice the input/output operations per 

second (IO/s) and about 30 percent more bandwidth 

than the 7,200-RPM hard disk. The 7,200-RPM 3 TB 

hard disk and the 7,200-RPM 1 TB hard disk have 

roughly similar performance characteristics. 

The number of spindles can also affect performance. 

For example, although three 1-TB disks and one 3-TB 

disk offer the same capacity, three 1-TB disks have 

three times the bandwidth and support three times 

the IO/s compared to one 3-TB disk.  

For the example in this paper, two types of disk 

enclosures are considered, a 12-disk enclosure and 60-

disk enclosure. Both disk enclosures use the same type 

of SAS-2 interface for connecting to the storage 

controller. Because the metadata storage requires 

smaller space but high IO/s, the 12-disk enclosure will 

be considered for the metadata storage. The 60-disk 

enclosure appears more appropriate for the object 

storage if it provides enough bandwidth. 

To address the fault tolerance requirement, both the 

metadata storage and the object storage will be 

configured into appropriate RAID groups. Capacity and 

performance are the two primary determining factors 

when selecting a RAID level.  

In this example, the object storage will be designed to 

provide usable space for data storage, and then the 

metadata storage will be designed to support the 

object storage. 

Configuring Object Data Storage 
For the object storage, capacity is of primary interest 

because the capacity of the object storage determines 

the usable space for storing data. However, 

performance is also an important consideration 

because the IO throughput directly impacts the 

performance of the file system. This study prioritizes 

capacity over performance; however in other cases, 

performance may be the driving factor. 

For object data storage, we’ll consider HDD disks (4-TB, 

7200-RPM) that will be located inside enclosures   

capable of holding sixty disk drives (see Table 2). First, 

the RAID configuration for the disks must be 

determined. The configuration must be designed for 

high disk utilization first, and then optimized for 

performance. A ten-disk, RAID-6 group (eight data 

disks + two parity disks) allows 80 percent disk 

utilization while accommodating two disk failures.  
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The RAID-6 configuration can result in a write 

performance penalty when the data size does not 

match the stripe size. In this case, the controller must 

read old parity and old data from the disk and then use 

that information in combination with the new data to 

calculate the new parity. This is operation is known as 

“read-modify-write”.  

To mitigate this performance penalty, “full stripe write” 

is often used, in which the data size matches the stripe 

size so that parity can be calculated directly without 

reading information from the disk first. Because Lustre 

reads and writes data in 1-MB segments, the RAID 

segment size is set to 128 KB, so that 1 MB of data is 

striped across all the data disks.  

The disks in each 60-disk enclosure can be configured 

into six, 10-disk, RAID-6 groups. Each RAID-6 group 

provides approximately 32 TB of storage, so each 

enclosure provides approximately 192 TB of storage. 

Note that disk capacity is stated in decimal GB (where 

1 GB = 1,000,000,000 bytes) while file system 

capacity is stated in binary GB (where  1 GiB = 

1,073,741,824 bytes). This needs to be taken into 

account in these calculations.  

𝑇𝐵
𝑇𝐵

=  1012 𝐵
240𝐵

≅ 0.91 

Plus, the root file system will reserve 5%. Therefore, 

each enclosure can provide 164 TB of usable space.  

 

192 × 0.9 × 0.95 ≅ 164 𝑇𝐵  

The number of enclosures needed for 10 PB of usable 

space is:  

10 × 1024 𝑇𝐵
164 𝑇𝐵 /𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒 

= 62.43 

To satisfy the requirement for 10 PB of usable space, 

63 disk enclosures will be used for this design. 

The next step is to consider performance 

requirements starting with this initial design. To reach 

100 GB/s aggregated bandwidth, the bandwidth each 

disk enclosure must contribute is:  

100 𝐺𝐵/𝑠𝑒𝑐
63 𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑠

≅ 1.6 𝐺𝐵/𝑠𝑒𝑐 

Since each enclosure has six RAID-6 groups, with each 

containing eight data disks, and the Seagate ES.2 disks 

in the enclosure support a theoretical sustained data 

transfer rate of 155 MB/s, the total theoretical 

bandwidth of the 48 data disks is:  

155 MB/s x 48 = 7.4 GB/s 

However, the theoretical bandwidth is difficult to 

achieve in actual use because the efficiency of the 

RAID controller and the bandwidth of the disk 

controller must also be taken into account. The actual 

throughput of a RAID-6 storage enclosure may be less 

than half of the theoretical throughput per disk. For 

example, 3 GB/s per enclosure if the SAS expander is 

the limiting factor, which is enough to exceed the 1.6 

GB/s minimum requirement. 

As most disk enclosures connect to the storage 

controller via a 4-lane Serial Attached SCSI-2 (SAS-2) 

cable with a performance of 6.0 Gb/s per lane, the 

maximum possible bandwidth out of a single disk 

enclosure is calculated as follows:  

6 𝐺𝐵/𝑠 ×  4 𝑙𝑎𝑛𝑒𝑠 × 
1 𝐵
8 𝑏

 = 3 𝐺𝐵/𝑠  

Thus, the connection between the disk enclosure and 

the storage controller determines the aggregate 

bandwidth that can be achieved in this design. This 

bandwidth exceeds the bandwidth contribution of  

1.6 GB/s required by each of the 62 enclosures to 

achieve the 100 GB/s aggregate bandwidth for the 

system. 

The bandwidth of the disks themselves is twice that of 

the enclosure connection to the storage controller, so 

disk performance is not a limiting factor in this design. 
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The number of disk enclosures is also not a limiting 

factor.  

Note, however, that if the system bandwidth 

requirement were tripled to 300 GB/s, each of the 63 

disk enclosures would need to provide 4.76 GB/s 

bandwidth, which is higher than what the 3 GB/s disk 

enclosures used in this design can support. In that 

case, the disk layout would need to be redesigned to 

add more disk enclosures. For example, 2-TB, 7200-

RPM disks could be substituted for the 4-TB disks used 

in this design to achieve better performance. Doing so 

would spread the same storage capacity over more 

enclosures.  

Configuring Metadata Storage 
For metadata storage, performance is of primary 

interest. This is because for each IO operation, file 

attributes must be obtained from the inode for the file 

in the metadata storage before the file can be 

accessed in the object storage. Thus, metadata access 

time affects every IO operation. However, metadata 

storage capacity requirements are typically small 

relative to capacity requirements for object storage, so 

capacity is unlikely to be a significant concern.  

Since the majority of metadata operations are queries 

(reads), a RAID-10 configuration is best suited for 

metadata storage. RAID-10 combines features of 

RAID-1 and RAID-0. RAID-1 provides data mirroring by 

configuring disks in pairs to mirror each other. RAID-0 

enhances performance by striping data across two 

RAID-1 pairs. Because two disks in the RAID-10 set 

contain the same content, data can be alternately read 

from both of disks, effectively doubling read 

performance, which significantly contributes to overall 

system performance. Unlike RAID-5 or RAID-6, RAID-10 

has no parity drives and, thus, no “read-modify-write” 

penalty. The segment size of the metadata storage 

can be set to 4 KB, which matches the metadata IO 

size.  

To properly determine the size of the metadata 

storage, it is important to understand what the 

average file size will be. For this example, the average 

file size is assumed to be 5 MB. The minimum number 

of inodes that will be stored can be calculated by 

dividing the required object storage capacity by the 

average file size:  

10 PB / 5 MB per inode = 2x109 inodes 

For future expansion, space should be reserved for 

twice the minimum number of inodes. Since each file’s 

metadata in Lustre 2.1 or a newer release can need up 

to 2 KB of space, metadata storage must be at least:  

2 𝐾𝑖𝐵 
𝑖𝑛𝑜𝑑𝑒

 𝑥 2𝑥10
9 𝑖𝑛𝑜𝑑𝑒𝑠
230

 𝑥 2 ≅  7.5 𝑇B 

For this design, Seagate 15000–RPM, 600-GB disks will 

be used for the metadata storage. See Table 2. The 

required number of disks can be determined by 

dividing the required metadata storage by the disk 

capacity, and multiplying by two (because the disks will 

be configured as RAID-10 mirrored pairs):  

2 × 7.5𝑇𝐵

600 𝐺𝐵 × 109
230 × 0.95

≅ 29 𝑑𝑖𝑠𝑘𝑠 

Recall that disk capacity is measured in decimal GB 

(109  bytes) while file system capacity is measured in 

binary GB (230 bytes).  

As 4 billion inodes was the estimate based on assumed 

average file size (2 billion inodes X 2), for the sake of 

architecture simplicity, 30 disks are used for the rest 

of this discussion. If there were the exact file count 

requirements, the same calculation applies. 

Three, 12-disk enclosures will be needed to make 30 

disks available for inode storage, leaving the remaining 

six disks slots for hot spare devices (two per 

enclosure).  

Figure 4 shows the storage configuration for the 

metadata storage. 
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Figure 4. Metadata storage system 

Storage Controllers 
A storage controller manages disks and disk 

enclosures. Its basic function is to make disk space 

available as block devices to the storage area network 

(SAN).  The storage controller serves as a gateway, 

connecting to the disk enclosures via SAS-2 cables.  

The controller provides one or more types of storage 

network interfaces to the SAN, such as Fiber Channel 

(FC), 10GbE, or InfiniBand (IB). As a gateway, a storage 

controller aggregates the bandwidth of the backend 

disks/enclosures as it passes data between the 

backend disks and the storage servers. Therefore, it is 

important to understand the performance 

characteristics of the storage controller to be used. 

For this example, a general-purpose storage controller 

is used. The controller has eight SAS-2 ports to 

connect the backend disk enclosures. It also has eight 

8-Gbps Fibre Channel ports and four SAS-2 ports, one 

or the other of these two port types can be used at a 

time, to connect the storage servers. 

To calculate the number of storage controllers needed 

to support the backend disk enclosures, use these 

considerations:  

• Each of the 63 object storage enclosures must 
provide a bandwidth of at least 1.6 GB/s.  

• One 4-lane, SAS-2 cable can support 3 GB/s. 

Controller hardware or software can fail due to 

external or internal causes. Thus, it is common for a 

controller to be composed of two sub-controller 

modules that serve as backups for each other, as 

shown in Figure 5. 

 
Figure 5. Cache mirroring between sub-controller 
modules 

To optimize performance, the two sub-controller 

modules are normally in an Active-Active configuration. 

Many controllers have built-in cache mechanisms to 

improve performance. Caches must be coherent 

between sub-controller modules so that either sub-

controller module can transparently take over the I/O 

from the other sub-controller module. A cache-

mirroring link often exists between sub-controllers for 

this purpose. 

This cache-mirroring link can be a limiting factor 

because data must be mirrored to the cache of the 

second sub-controller module before the first sub-

controller can return an acknowledgement indicating a 

successful IO operation.  

Cache-mirroring links are implemented using a variety 

of means, from gigabit Ethernet cables to a dedicated 

PCIe bus. Because the performance degradation due to 

cache mirroring has become more widely 
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acknowledged, many vendors have enhanced the 

cache-mirroring link to support a bandwidth that is at 

least equivalent to that of a quad-data-rate Infiniband 

cable. Nevertheless, it is important to examine the 

storage controller architecture as part of the design 

process.  

Note that in the case where there is no cache-

mirroring link between the controllers, the cache on 

the controllers must be disabled entirely to ensure that 

the file system does not become corrupted in the 

event of a controller failure. 

Our example assumes that the cache-mirroring link 

between the sub-controllers in the selected storage 

controller limits the overall bandwidth of the storage 

controller to 6 GB/s. 

Each enclosure can support 1.6 GB/s bandwidth. Three 

enclosures will deliver 4.8 GB/s bandwidth, while four 

enclosures will deliver 6.4 GB/s, which exceeds the 

limit of 6 GB/s. So in this case, the bandwidth provided 

by three enclosures will best match each storage 

controller’s bandwidth. The number of storage 

controllers required is 21. 

Storage Servers 
A storage server serves files for access by clients. A 

storage server differs from a storage controller in that 

the storage server exports file system space rather 

than block devices. The content in the shared file 

system space on a storage server is visible to all clients 

and the storage server coordinates parallel, concurrent 

access by different clients to the files. In contrast, a 

storage controller cannot coordinate access by multiple 

clients to the block devices it exports due to limitations 

of the block device protocols. Potential conflicts must 

be managed at the client level, making parallel access 

by clients to stored data more complex.  

Many storage servers consolidate the functions of a 

storage server and a storage controller into one 

physical machine. This section discusses the limitations 

that storage servers can introduce, regardless of 

whether they reside on physically separate hardware 

or not.  

Designing the Lustre Metadata Server 
A Lustre file system includes two types of servers, a 

metadata server (MDS) and one or more object storage 

servers (OSSs). The metadata server must be able to 

quickly handle many remote procedure calls (RPCs) 

because the MDS is the starting point for all POSIX file 

system operations, such as open, close, read, write, 

and unlink. Whenever a Lustre client needs to access a 

file from a Lustre file system, it queries the metadata 

target (MDT) via the MDS to obtain the POSIX 

attributes for that file ( e.g., owner, file type, access 

permission) and the file data layout (e.g.: how many 

OSTs the file is striped over and the specific objects 

that make up this file). 

Therefore, the MDS needs powerful CPUs to handle 

simultaneous inquiries, and a large amount of RAM to 

cache the working set of files and avoid high-latency 

disk operations.  

Because IO operations on the MDT are mostly small 

and random, the more data that can be cached into 

memory, the faster the MDS will respond to client 

queries. As a result, the number of clients and the 

number of files the clients are accessing in their 

working set, determine the amount of memory 

required by the MDS [5].  

Apart from 1 GB required by the operating system and 

4 GB required for the file system journal, about 0.1% 

of the MDT size is needed for the MDT file system’s 

metadata cache. The remaining RAM is available for 

caching the file data for the user/application file 

working set. The working set cached in RAM is not 

always actively in use by clients, but should be kept 

"hot" to reduce file access latency and avoid adding 

extra read IO/s to the MDT under load.  
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Approximately 2 KB of RAM is needed on the MDS for 

the kernel data structures, to keep a file in cache 

without a lock. Every client that accesses a file also 

needs approximately 1 KB of RAM for the Lustre 

Distributed Lock Manager (LDLM) lock, resulting in 

about 3 KB of RAM required for each file in cache. A 

typical HPC working set might be 100 files per CPU 

core.  

Table 3 shows how required MDS memory is calculated 

for the Lustre file system in this example. This file 

system has: 

• one MDT on an active MDS 

• 2,000 8-core compute clients 

• 64 user-interactive clients (with a considerably 
larger working set) 

• a hot cache supporting an additional working set 
of 1.5 million files. 
 

Table 3: MDS RAM Calculation 

Memory Consumer Required 
Memory 

Operating system overhead  1,024 MB  

File system journal  4,096 MB 

MDT file system metadata 
(0.1% of 8192 GB) 

 8,192 MB 

2000, 8-core clients X 100 files 
per core X 3 KB/file 

 4,687 MB 

64 interactive clients X 10,000 
files X 3 KB/file 

 1,875 MB 

2-million-file working set X 1.5 
KB/file 

 2,929 MB 

Total 22,803 MB 

 

The minimum memory for the MDS server for a file 

system with this configuration is 24 GB RAM. However, 

the example shows that with larger numbers of 

interactive clients and larger working sets of files, 

additional RAM will be required for optimal 

performance.  128 GB RAM or more is often used for 

better performance. 

Designing the Object Storage Servers 
Storage servers are usually equipped with IO cards 

that either communicate with the back end storage 

controllers or with clients at the front end. Commonly-

used storage protocols are SAS, FC, and iSCSI, while 

client network protocols are usually IB or 10GigE. 

Typically, a SAS or FC host bus adapter (HBA), and an 

IB host channel adapter (HCA) or 10GbE NIC are 

installed on storage servers. Even if both the storage 

and client networks are run over Infiniband, separate 

physical networks should be used to avoid contention 

during IO, when both channels will be used at the same 

time. 

For the example in this case study, to calculate how 

many OSS nodes are required and how the object 

storage targets (OSTs) will be distributed among them, 

consider that the storage controller needs to 

aggregate at least 4.8 GB/s from the backend disks. To 

accommodate this bandwidth, two SAS-2 ports on each 

storage server can be used to connect the storage 

server to the storage controller.  

Because the OSS requires a high-availability design, the 

number of IO cards at the backend must be doubled to 

be able to support failover. The SAS cards are more 

efficient than the FC cards in terms of PCIe slot 

utilization, so they will be used for this design.  

Figure 6 shows how active-active pairs of OSSs are 

connected to two each of the 21 storage controllers. 

Here, 21 OSSs will be needed at a minimum.  

However, because we should also consider failover 

between each two OSS nodes, 22 OSSs are required. 
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Figure 6. Lustre OSS high availability configuration 

Determining OSS Memory Requirements 
Like the MDS, the OSS uses memory to cache file 

system metadata and for LDLM locks held by the 

clients. In addition to the metadata memory 

requirements described for the MDS above, the OSS 

needs additional memory for the 1-MB RDMA I/O 

buffer needed for each object storage target (OST) IO 

service thread. The same calculation applies for files 

accessed from the OSS as for those accessed from the 

MDS (see Table 4), but the load is spread over 22 OSS 

nodes in this case, so the amount of RAM required for 

inode cache, locks, etc., is spread out over the OSS 

nodes [4]. 

While an OST has less file system metadata than the 

MDT (due to smaller inodes, few directories, and no 

extended attributes), there is considerably more OST 

storage space per OSS in this configuration (492 TB vs. 

8 TB). This means an adequate amount of RAM must 

be reserved for the OST metadata. 

Table 4 calculates the absolute minimum RAM required 

in an OSS node. These calculations take into account a 

failover configuration with 18 primary OSTs on each 

OSS node, and 18 backup OSTs on each OSS node. 

When an OSS is not handling any failed-over OSTs, the 

extra RAM is used as read-cache. The OST thread 

count defaults to 512, which is close to the 32 IO 

threads per OST that have been found to work well in 

practice.  In this case, 64 GB RAM is minimal and 128 

GB RAM is recommended for better performance. 
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Table 4: OSS RAM Calculation 

Memory Consumer Required Memory 

Operating system overhead   1,024 MB 

Ethernet/TCP send/receive buffers (1 MB X 512 threads)     512 MB 

400 MB journal X (18 + 18) OST devices   14,400 MB 

1.5 MB RDMA per OST IO thread X 512 threads     768 MB 

OST file system metadata cache (0.05% of 492 TB) 25,190 MB 

800 MB data read cache X 18 OSTs   14,400 MB 

2000 8-core clients X 100 files per core X 3 KB/file   4,687 MB / 40     118 MB 

64 interactive clients X 10,000 files X 3 KB/file   1,875 MB / 40       47 MB 

2 million file working set X 1.5 KB/file   2,929 MB / 40       74 MB 

Total 56,533 MB 

Selecting IO Cards for the Interface to 
Clients 
An Infiniband host channel adapter (HCA), or a 10 Gb or 

1 Gb Ethernet NIC is typically provided on the storage 

server, and this provides connection to the network on 

the front end, depending on the type of storage area 

network. 

For example, if the OSTs on an OSS only need to 

deliver 1 GB/s bandwidth, one 10 Gb Ethernet card is 

sufficient to relay the bandwidth to Lustre clients. 

However, if the OSTs on an OSS can deliver 5 GB/s 

bandwidth, one fourteen data rate (FDR) Infiniband 

HCA would be needed to make the bandwidth available 

to Lustre clients. The numbers in Table 5 can be used 

as a guide. 

 

 

Table 5: IO Card Bandwidth 

IO Card Bit Rate Theoretical Peak  
Bandwidth 

Peak Bandwidth as  
Measured by Author  

1 FDR Infiniband  54 Gbps 6.75 GB/s 6,000 MB/s 

1 10 Gb Ethernet 10 Gbps 1.25 GB/s 1.1 GB/s 
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Because each OSS needs to provide at least 4.8 GB/s 

from the storage controller, an FDR Infiniband port 

would be the best match. 

Cluster Network 
Lustre clients connect to the Lustre file system via a 

network protocol. Popular choices are InfiniBand and 

10 Gb Ethernet. A network architecture that has not 

been optimized can be a limiting factor. The most 

common issue encountered is that the network 

switches do not support interconnections of sufficient 

bandwidth between storage servers and clients, due to 

oversubscription, as shown in Figure 7.  

In Figure 7, twelve ports from each of two 36-port IB 

switches are used to bridge two IB fabrics, while the 

other 24 ports on each switch support 24 internal 

nodes on the IB fabric. The aggregated bandwidth of 

the 12 IB links is not sufficient to support optimal 

communication between the 24 nodes on each of the 

switches.  

 
Figure 7. Oversubscribed IB fabric 

 
 

 

 

 

Figure 8. Non-oversubscribed IB fabric 

Conversely, Figure 8 is an example of a non-

oversubscribed IB fabric. The bandwidth between any 

of the nodes on either IB switch is the same.  

The Lustre file system in this example has 22 OSS 

nodes and two MDS nodes. Each OSS requires one port 

on the FDR IB switch. The backend storage can be 

connected to these nodes directly with cables because 

only block devices are presented to the Lustre servers. 

Thus, 24 ports are required on the Lustre storage side 

of the OSS servers.  

However, 2,000 client nodes will be accessing the 

Lustre file system and all of these clients need to be 

connected to the same IB fabric. To the best of our 

knowledge, an IB switch does not exist that supports 

2,040 ports. Multiple IB switches must be bridged to 

satisfy the capacity requirements. It is important for 

optimal performance that these IB switches be bridged 

without oversubscription.  

Another consideration is that, although Lustre servers 

and Lustre clients are often both on a high speed 

network such as InfiniBand, some Lustre clients may 

be on a slower network such as 1 Gb Ethernet.  Clients 

on a slower network can access the Lustre file system 

using Lustre LNET routers. A Lustre LNET router is a 

special Lustre client with multiple network interfaces, 

for example, one InfiniBand interface and one 1 Gb 

Ethernet interface. The Lustre LNET router bridges 

these interfaces, offering flexibility when designing 

the network configuration. 

Reviewing the Storage System 
The iterative design process is now applied to all the 

aggregated building blocks comprising the complete 

storage system.  
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As Figure 9 shows, the storage system consists of: 

• 3 12-disk enclosures 

• 1 storage controller for the MDT 

• 2 MDS servers 

• 63 enclosures, each containing 60 disks 

• 21 storage controllers for OSTs 

• 22 OSSs 

 

 
Figure 9. The complete Lustre storage system 

Each of the 63 disk enclosures contains 60, 4-TB, 

7,200 RPM disks. The disks in each enclosure are 

structured into six RAID-6 groups of ten disks each, 

with eight of the ten disks available for data. Each 

RAID-6 group presents as a LUN, which is formatted by 

the Lustre OSS as an OST. Thus, each disk enclosure 

contains 6 OSTs.  

The capacity of the designed system is calculated as:  

4 x 1012 x 10 x 8/10 x 0.9 x 0.95 x 6 x 63 ≅ 

10.1 PB 

Thus, this configuration meets the requirement for 10 

PB of usable space. 

Each backend disk enclosure offers approximately 3 

GB/s bandwidth; the bandwidth of the storage pipeline 

is limited to 6 GB/s by the storage controller. Because 

Lustre aggregates all the OSS bandwidths linearly and 

can achieve up to 90% of hardware bandwidth, the 

performance of the designed system is calculated as:  

6 GB/s x 90% x 21 storage controllers = 

113.4 GB/s 
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Thus, the total bandwidth supported by this Lustre file 

system is 113.4 GB/s. This performance meets the 

aggregate bandwidth requirement of 100 GB/s.  

Conclusion 
The process of designing a storage system is not 

straightforward, as many different aspects must be 

considered. The step-by-step approach to designing a 

high-performance storage system, and resolving the 

common issues that were described in this paper, is 

based on two general design methods: 

• Design the backend disk storage first, and then 
gradually work up the storage “pipeline” to the 
client.  

•  Iteratively review the design and incrementally 
factor in more requirements.  

We demonstrated our approach with a case study 

showing the design of a Lustre file system. Starting 

with selecting disks and ending with designing the 

storage area network, we applied the pipeline 

approach and iterative design method to gradually 

arrive at a storage architecture that met the system 

requirements. 

More information 
For more information, contact your Intel® Lustre 
reseller, or email the Lustre team at Intel® at:  
hpdd-info@intel.com.  
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